Multiphysics 2011, Barcelona, Spain

Multiphysics in Automotive Engineering

Mechanical Engineering Department
Kettering University
Flint, Michigan, USA

1

General Motors Institute

GMI
Founded in 1919
Cooperative Education
Industrial Partners

Today's Automotive Industry

- Worldwide Competition
- Customer Expectations
- Better Products
- Decreased Time-To-Market
- Cost Reduction

Industrial Necessities

- Incorporate interdisciplinary design and manufacturing constraints
- Development of virtual or digital environments for real-world design simulations

Industrial Necessities

Opportunity for Collaboration

Industries

- Identify Challenges
- Acquire tools & expertise
- Sponsor improvements

Engineering Providers

- Simulation Technology
- Process Improvement implementation

Educational Institutions

- Training of engineers
- Engineering research

Public Research

- Sponsor engineering research
- Define standards
- Regulation

Industries

- Acquire and develop the right tools
- Develop expertise to maintain their competitiveness
- Sponsor improvement programs where internal and external resources are brought together to collaborate

Educational Institutions

- Providing the core technical professionals
- Prepare multi-disciplinary technical professionals
- Ultimately, play a central role in our increasingly technologically based society

Engineering Providers

- Responding to the industrial needs by providing the right engineering software
- Providing people who can help implement new technology developed by the emerging engineering research

Governmental Agencies

- Investing funds to promote engineering research that lead to improved engineering for increased public safety
- Defines standards that help industries interact with each other
- Ensure that regulations are applied to serve the public good while not impairing the ability of industries to function with a reasonable level of business success

CAE in the Industrial Setting

- Qualitative & Quantitative relation
- CAE knowledge tools that correlate with physical testing
- Integration of design, simulation, and synthesis, to improve the product design process
- Integration of CAE driven design processes within a historically corporate culture devoted to 'build-ntest"

Automotive Design with Virtual Prototypes

Up-Front Computational Simulation

CAE Influence

CAE

- Accuracy
 - Smaller meshes, more accurate physics, improved algorithms
- Speed
 - Design Validation
 - Optimisation

CAE Cycle

- Pre-processing
 - Meshing
 - Geometry simplification
 - Model assembly
 - Loading
 - Materials
- Solving
- Post processing
- Iteration Optimisation

Trailer Under-ride Guard

Conventional Underride Guard

Offset Underride Guard

Trailer Under-ride Guard

Conventional Bumper

Offset Bumper

Finite Element of Striking Vehicle

Energy Absorption

Underride Guard Energy Absorption vs. Time

Striking Vehicle Deceleration

Striking Vehicle Velocity vs. Time

Conventional Bumper Simulation

New Bumper Simulation

CAE in Automotive Engineering

- Strength and Durability
- Noise, vibration and harshness (NVH)
- Crashworthiness
- Occupant Safety
- Climate control
- Aero-thermal management
- Ride and Handling

Frame Torsional Stiffness

Hood Slam Fatigue Simulation

Thermal Analysis Grille Chrome

The "Multi" World

MULTIPHYSICS: problem divided into partitions per physical domains

 MULTISCALE: problem divided into partitions per represented scales

• MULTIPROCESSING: distributed representations per computational resources

Multiphysics

Multiphysics: the interaction of physically heterogeneous coupled system modeled at similar spatial / time domains

Integration Challenge: Multiphysics

Multiphysics Coupling

Subsystem I

Subsystem II

Weak Coupling (One-way)
Sequentially updated over interacting subsystems

Multiphysics Coupling

Strong Coupling (Two-way) simultaneously updated over interacting subsystems

HEEDS MDO

- ▶ A multi-disciplinary design optimization (MDO) software product that:
 - Automates the design evaluation process
 - ▶ Performs *parametric* design studies MDO, DOE, Stochastic

HEEDS COMPOSE

- COMPOSE COMPonent Optimization within a System Environment
- New method for enabling high-fidelity design of subsystems in highly coupled complex systems

HEEDS MDO – Modules

CAE Portals

- Provide direct interfaces to major CAE tools:

 Excel
 - Abaqus

SolidWorks

Adams

- SW Simulation
- ANSYS WB
- NX
- ▶ LS-DYNA
- Moldflow

- Nastran
- ...and others
- Simplify development of design study models

PARALLEL

- Performs multiple analyses in parallel
- Speeds up optimization runs linearly with extra computing resources
- ▶ Interfaces with existing queuing software (PBS, LSF, MS Server and more)

▶ HEEDS Q

▶ A job submission and management environment

Seat Frame Optimization

- Loading: Rear Impact, Modal
- Two Objectives (Pareto optimization problem)
 - Minimize Mass of the side members
 - Minimize Cost (material and manufacturing)
- Constraints
 - Peak avg. dynamic angular deflection < 30º
 - Maximum Twist < 15°
 - Max Recliner Torque < 1800 Nm
 - Natural Frequency 1st mode > Baseline
- Design Variables (TWB)
 - Thickness: 2 variables
 - Material: 2 variables
 - Shape: 7 variables

- •Reduced Mass by 25% / 10%
- •Reduced Cost by 33% / 12%

Aero-acoustics

Wind Noise

Objectives

- ☐ To predict the aerodynamic noise generated by a vehicle.
- ☐ To find the region of the vehicle where the high noise source so that the NVH performance of the vehicle is improved by further modification of its geometry.

Approach

- A van type of the simplified vehicle is modeled
- The box around the vehicle is created for fluid flow simulation.
- The half of the vehicle is mounted on the box.

	H (m)	W (m)	L (m)
Vehicle	1.44	0.9	4
Вох	5	5.15	30

FE Model

Nodes	Elements
27152	93590

Boundary Conditions

Inlet Velocity: 200 kph

Vehicle, Ground: No slip wall

Boundary Conditions

Six receivers are located at bottom, middle, and top of the edge of the front and the rear of the vehicle.

Results

☐ Flow velocity

- ■The faster air flow observed at the bottom of the frontal area of the vehicle.
- Wake region behind of the vehicle can be seen.

□Flow Pressure

■ High pressure at the front and low pressure at the rear area of the vehicle

☐Noise Generation

■Bottom and a-pillar region of the vehicle radiate most of noise.

Velocity Vectors

Velocity Paths

Dynamic Pressure

Sound Pressure Level

Receiver	Overall sound pressure level (dB)
1	94.71697
2	105.3221
3	107.5347
4	103.1495
5	118.7685
6	101.9685

Conclusion

- The bottom of the frontal area and the rear area of the vehicle are predicted to generate most of the wind noise when the vehicle cruising at high speed.
- At frontal region, receiver 3 located at the bottom shows high sound pressure level.

Conclusion

- Highest sound pressure level observed at receiver 5.
- Due to turbulence created at the wake regions that are sources of sound (unsteady pressure variation).
- High noise source regions can be modified to improve NVH performance in design-wise.

Virtual Testing for Crash Safety

Testing with Virtual Prototypes

Early Design Cycle

- Packaginging vehicle front-end structure
- Restraint system selection
- Model correlation
- Component design

Middle Design Cycle

- Model updating
- Restraint system design

Late Design Cycle

- Model updating
- Fine tuning restraint system design
- Lessons learned

Optimize with CAE:

Early Design Cycle Modeling

- * Lumped-mass models for packaging studies
- * Madymo models for restraint system selection
- Non-linear beam models for structural section selection

Ex: Frontal & Side Impact S tudies

Mid-Cycle Design Modeling

- * Madymo/Non-linearFE Coupling
- * Madymo/FluidCoupling
- * Hybrid Lumped mass / FE
- * Component FEA

Late-Cycle Design Modeling

Ex: Frontal, Rigid Fixed Ba rrier Studies

Ex: Side Impact Studies

Examples of Vehicle Crash Modes

Frontal impact

IIHS 40% offset impact

Side impact

Oblique impact

Full frontal collinear impact

50% offset collinear impact

Biomechanics

- Growing Multiphysics area
- Made possible by FEA techniques
- Can lead to refined injury criteria based on tissue level injuries rather than forces and moments
- Currently used for hypothesis testing
- Example: human skull/brain, Total Human Body Model

Human Head/Brain Modeling

- FE model for the human head and brain has been developed and validated against frontal impact cadaver test data. The model has been used for various impact conditions in automotive environment
- Experimental and theoretical studies of human skull fracture risks and tolerance
- Modeling the boundary between the CSF and brain with Solid-Fluid Coupling technique

Human Body Head and Neck

Response, Tolerance, and Mechanisms of Brain Injury

Human Body Modeling (HBM)

- Worldwide crash regulations have differences in crash dummies and divergence in injury criteria
- Regulatory injury criteria is based on the biofidelity and measurement capability of crash dummies
- Tissue level injuries as opposed to forces, moments, acceleration, etc. with dummies
- New advanced Restraint System evaluation
- Drives human like dummy development with an optimum goal to replace crash dummies with HBM
- Mild Traumatic Brain Injury (MTBI), predictions through strain and strain rate of the brain tissue

Descriptions of the HBM

- The model is fully deformable, no rigid body defined for any body part.
- The synovial joints are defined by contact interfaces with synovial fluid in between.
- Long bones were characterized by elastic-plastic material and soft tissues were characterized as visco-elastic.
- Used as a research tool in assessing new restraint system

Total Human Body Modeling

Blunt Impact Test/Simulation Validations

Challenges to Crash Safety Simulation

Damage and Rupture Modeling

- Rupture of sheet metal
- Rupture of cast components such as suspension arms, transmission housing, etc.
- Rupture of engine mounts and other joints

Challenges to Multiphysics Simulation

- An Automated Process to evaluate a family of crashes covering all critical speeds, impacts conditions, occupant size/age/seating position
- Integrated Structure-Occupant-Restraint analysis and Cross-Attribute Optimization
- Biomechanics Modeling:
 - Replace dummy models with human models can lead to refined injury criteria
- Stochastic and robustness analysis

Automotive Industry Recalls

In 2004, the Auto Industry recalled 30,556,064 million cars, pickups, SUVs and vans in 598 separate actions.

An average recall takes 250 days and costs \$1 million a day.

Average Cost = \$250 million.

Automotive Industry Recalls

To be able to evaluate designs in a realistic environment, one that includes uncertainties

67

MSC.Robust Design

MSC.Robust Design is a tool which enables one to perform stochastic simulation, i.e. to evaluate and understand the behaviour of systems in the presence of uncertainty.

Nominal Performance – Focus of traditional analysis

Performance scatter – Focus of Robust Design analysis

Acknowledgment

- Dr. Saeed Barbat, Ford Motor Company, Dearborn, MI
- Mr. Angelo Flemings, Red Cedar Technology, East Lansing, MI
- Mr. John Janevic, MSC Software, Santa Ana, CA
- Mr. Hungjhun Park, Kettering University, Flint, MI

Thanks